MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

 (Autonomous Institution - UGC, Govt. of India)I B.Tech I Semester Supplementary Examinations, June-2022 Engineering Drawing (ECE, CSE)

Roll No										

Time: $\mathbf{3}$ hours
Max. Marks: 75
Answer Any Five Questions
All Questions carries equal marks.
1 Draw an epicycloid of rolling circle of diameter 40 mm which rolls outside another circle (base circle) of 150 mm diameter for one revolution. Draw a tangent and normal at any point on the curve.

2 Construct a scale of 1:40 to read metres and decimetres and long enough to measure 6 m . Mark on it a distance of 4.7 m .

3 A point P is 15 mm above the H.P. and 20 mm in front of the V.P. Another point Q is 25 mm behind the V.P. and 40 mm below the H.P. Draw projections of P and Q keeping the distance between their projectors equal to 90 mm . Draw straight lines joining (i) their top views and (ii) their front views.

4 A line $A B, 90 \mathrm{~mm}$ long, is inclined at 30° to the HP. Its end A is 12 mm above the HP and 20 mm in front of the VP. Its FV measures 65 mm . Draw the TV of AB and determine its inclination with the VP.

5 A Circular plane with a 60 mm Diameter is resting on a point it's circumference on the VP. The centre is 40 mm above the HP, and The surface is inclined at 45° to the VP. And perpendicular to the HP. Draw it's Projections?

6 A pentagonal Prism having a base with a 30 mm side and 60 mm long axis, is resting on one of its rectangular faces on the HP. with axis parallel to the VP. Draw its projections?

7 Draw an isometric view of a cylinder, with a 50 mm base diameter and 70 mm long axis when
(a)The base is on the HP
(b) The base is on the VP

8 Draw Front View, Top view and Side view for the figure shown below. All dimensions are in mm.

Page 2 of 2
(ME \& AE)

Roll No										

Time: 3 hours
Max. Marks: 75
Answer Any Five Questions
All Questions carries equal marks.

1 Figure shows two vertical forces and a couple of moment 2000 N-m acting on a horizontal rod, which is fixed at, end A. Determine the resultant of the system.

2 The magnitude of the resultant of two concurrent including angle of 90° between them is $\sqrt{ } 13 \mathrm{kN}$. When this included angle is changed to 60°, the magnitude of the resultant becomes $\sqrt{ } 19 \mathrm{kN}$. Find the magnitude of these two forces.
3 An inclined plane and a vertical wall as shown in below Figure support two identical rollers, each of weight 150 N . Assuming the smooth surfaces. Find the reaction induced at the points of support A, B and C

4 In a screw-jack, where the helix angle of thread is α and the angle of friction is φ, W is the load to be moved up/down, and P is the effort applied horizontally to a lever at a distance of L from the axis of the screw, discuss the effects of moving the load
(a) up
(b) down, if
(i) $\varphi<\alpha$, and
(ii) $\varphi>\alpha$ in each case.

6 Determine the centroid of the figure

7 Find the moment of inertia of the T-Section shown in figure.

8 Two trains A and B leave the same station on parallel lines. A starts with a uniform acceleration of $0.15 \mathrm{mt} / \mathrm{sec}^{2}$ and attains a speed of $24 \mathrm{~km} / \mathrm{hour}$ when the steam is required to keep speed constant. B leaves 40 seconds after with uniform acceleration of $0.30 \mathrm{mt} / \mathrm{sec}^{2}$ to attain a maximum speed of $48 \mathrm{~km} / \mathrm{hour}$. When will B overtake A ?

Page $\mathbf{3}$ of $\mathbf{2}$

I B.Tech I Semester Supplementary Examinations, June-2022 Engineering Physics-I
(ME, CSE \& AE)

Roll No										

Time: 3 hours
Max. Marks: 75
Answer Any Five Questions
All Questions carries equal marks.

1 Obtain the conditions for the interference of light reflected by a thin parallel film.

2 a. Explain resolving power of grating.
b. Explain Brewster's law.
c. Write a short note on the law of malus
a. With neat diagram explain principle, construction and working of Ruby Laser
b. List out the applications of lasers in various fields
a. Draw the block diagram of an optical fiber communication system and explain the function of each block
b. List out the application of optical fiber

5 Explain construction and working of Davision - Germer experiment to prove that the moving matter is associated with a wave.

6 Deduce equations for wave function and energy of the particle in a onedimensional potential box.

7 Discuss the differences between the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics.

8 Explain how PN junction is formed. Explain the working of PN diode in both forward and reverse bias conditions and explain the energy level diagram of PN junction.

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
I B.Tech I Semester Supplementary Examinations, June-2022
Mathematics-I
(ME, CSE, AE)

Roll No										

Time: 3 hours
Max. Marks: 75
Answer Any Five Questions
All Questions carries equal marks.
1 Find weather the following equations are consistent, if so solve them
[15M]

$$
x+y+2 z=4,2 x-y+3 z=9,3 x-y-z=2
$$

2 State and verify Cayley Hamilton theorem, hence find the inverse and A^{4} of the

$$
\text { matrix } A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & 1 & -1
\end{array}\right]
$$

3 If $u=\frac{x+y}{1-x y}, v=\tan ^{-1} x+\tan ^{-1} y$. Find $\frac{\partial(u, v)}{\partial(x, y)}$. Hence prove that u and v are
Functionally dependent.
4 Verify Rolle's theorem for the function $f(x)=(x-a)^{m}(y-b)^{n}$ where m,n are
[15M] positive integers in $[a, b]$
(a) Solve $(2 x-y+1) d x+(2 y-x-1) d y=0$.
(b) Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.

6 A bacterial culture, growing exponentially increases from 200 to 500 grms in the period from 6 am to 9 am . How many grams will be present at noon.

7 Solve $\left(D^{2}+a^{2}\right) y=\tan a x$ by method of variation of parameters.
Solve the differential equation $\frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}-12 x=e^{3 t}$, given that [15M] $x(0)=1$ and $x^{\prime}(0)=-2$ using Laplace transform.

